Colloidal cholesteric liquid crystal in spherical confinement
نویسندگان
چکیده
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.
منابع مشابه
Self-assembly of colloidal particles in deformation landscapes of electrically driven layer undulations in cholesteric liquid crystals.
We study elastic interactions between colloidal particles and deformation landscapes of undulations in a cholesteric liquid crystal under an electric field applied normal to cholesteric layers. The onset of undulation instability is influenced by the presence of colloidal inclusions and, in turn, layers' undulations mediate the spatial patterning of particle locations. We find that the bending ...
متن کاملDisclination lines at homogeneous and heterogeneous colloids immersed in a chiral liquid crystal.
In the present work we perform Monte Carlo simulations in the isothermal-isobaric ensemble to study defect topologies formed in a cholesteric liquid crystal due to the presence of a spherical colloidal particle. Topological defects arise because of the competition between anchoring at the colloidal surface and the local director. We consider homogeneous colloids with either local homeotropic or...
متن کاملSimulation of Heterogeneous Colloidal Particles Immersed in Liquid Crystals
This thesis describes an investigation of interactions between colloidal particles immersed in a liquid crystal. The presence of colloidal particles in the liquid crystal distorts the director field distorted from its uniform orientation. These elastic distortions produce topological defects around the particles, which induce anisotropic interactions between them, and these anisotropic interact...
متن کاملMagnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors
Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we ...
متن کاملPhase Behaviour of Colloidal Systems
torting the helical structure of the phase) and the nematic phase develops when the equilibrium pitch of the cholesteric phase becomes larger than the sample thick ness. This transition is first order and can easily be observed when approaching a smectic phase, because the cholesteric pitch diverges at this transition. In this way, it is possible to observe the growth of the cholesteric phase ...
متن کامل